
LLNL-CONF-405088

Signature Visualization of
Software Binaries

T. Panas

July 2, 2008

ACM Int. Conf. on Software Visualization
Herrsching am Ammersee, Germany
September 16, 2008 through September 17, 2008



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Signature Visualization of Software Binaries

Thomas Panas
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

{panas}@llnl.gov

Abstract

In this paper we present work on the visualization of software bina-
ries. In particular, we utilize ROSE, an open source compiler infras-
tructure, to pre-process software binaries, and we apply a landscape
metaphor to visualize the signature of each binary (malware). We
define the signature of a binary as a metric-based layout of the func-
tions contained in the binary. In our initial experiment, we visualize
the signatures of a series of computer worms that all originate from
the same line. These visualizations are useful for a number of rea-
sons. First, the images reveal how the archetype has evolved over
a series of versions of one worm. Second, one can see the distinct
changes between version. This allows the viewer to form conclu-
sions about the development cycle of a particular worm.

Keywords: binary analysis, malware visualization

1 Introduction

Malicious code, including viruses and worms, is software that ex-
ploits vulnerabilities in computer systems with the intent to steal,
modify or destroy data from that system or even damage the en-
tire system itself. The worldwide economy is increasingly depen-
dent on information technology. A successful vulnerability attack
could cause serious consequences for major economic and indus-
trial sectors, threaten infrastructure elements such as electric power,
and disrupt response and communication capabilities of first re-
sponders. For instance, CNN reported in 2007 that researchers
launched an experimental cyber attack which caused a generator
to self-destruct [CNN 2007]. Such cyber attacks could damage the
electric infrastructure and take months to repair. If a third of the
country lost power for three months, the economic price tag would
reach USD700 billion [CNN 2007], an economic blow equivalent
to 40 to 50 large hurricanes striking at the same time.

The primary problem with the overwhelming quantity of malicious
code stems from the fact that malware has become very simple to
deploy. Developing viruses and worms no longer requires special-
ized knowledge of computer architectures and operating systems;
the art of vulnerability exploitation is well documented in everyday
literature and accessible to anyone. Furthermore, there are toolkits
available today that allow novices to develop malicious code like
child’s play.

On the other hand, detecting malicious code is no easy game. Since
malicious code typically attaches itself to legitimate software, it is

essential to determine the behavior of the overall software (mal-
ware plus legitimate code) without actually executing it. Although
current anti-virus software effectively detects known malware, it
is relatively unsuccessful at detecting new kinds of malicious code
because its primary detection technique is based on predefined mal-
ware patterns. A better approach for analyzing malware software,
even in binary form, is to apply static analysis, a well-known ap-
proach in the field of compiler technology. This allows for the anal-
ysis of the malware-infected software without program execution.

2 ROSE

Our approach for software binary analysis is to parse a binary
file and represent it as an abstract syntax tree (AST). Our cur-
rent options to parse binaries are our own disassembler and IDA
Pro [DATARESCUE 2007], a disassembler that supports many dif-
ferent platforms including Linux and Windows and a wide vari-
ety of processor architectures. For the intermediate representation
(AST) of the binary we use ROSE an open source compiler in-
frastructure [ROSE 2008]. ROSE is a U.S. Department of Energy
(DOE) project, which currently can process million line C, C++ and
Fortran codes. Our approach of representing a binary as an AST
allows us to reuse much of the infrastructure of ROSE for binary
analysis. This enables us to perform static analysis on software
binaries, including malware. In addition, our AST representation
supports the easy creation of control-flow and data-flow graphs for
both – source code and binaries, allowing the development of more
sophisticated malware analyses.

3 Signature Visualization

We utilize the ROSE infrastructure to access information about soft-
ware binaries allowing us to uniquely represent and visualize each
binary. For this purpose, we compute metrics on binaries to visu-
alize a unique signature based on these metrics. There is no limit
to the choice of metrics that may represent the signature of a bi-
nary. To conduct our experiment of visual signature comparison –
described in Section 4 – we have chosen metrics that allow us to vi-
sualize a binary’s signature in three dimensional space using a land-
scape metaphor. The right choice of metaphor is essential to im-
prove the usability and understandability of a visualization [Panas
et al. 2007]. Metaphors found in nature are intuitive and provide a
graphic design that the user already understands. The metrics we
have chosen to represent binary signatures are:

Number of Control Transfer Instructions represents the number of
instructions within a function that cause a program to branch from
its sequential execution path. Examples of a control transfer in-
structions in x86 assembly are the jmp (unconditional jump), jz
(conditional jump when zero flag=1), loop, ret and call instruction.

Number of Instructions represents the total number of instructions
within a function.

Number of Data Transfer Instructions represents the number of in-
structions within a function that modifies register values or memory,
such as the mov,push and bswap instructions.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.



Figure 1: Binary Visualization of Malware Klez: a,b,c,d.

To represent these metrics using a three dimensional landscape
metaphor, we map the number of control transfer instructions to the
x-axis, number of instructions to the z-axis and the number of data
transfer instructions to the y-axis. We use a landscape metaphor
to represent the binary signature in order to increase the perception
and natural processing of the unique visual patterns (hills) [Petre
et al. 1998; Storey et al. 2000]. The problem with the suggested
visualization is, however, that the image will grow with the size
of the binary under investigation. Comparing different binary sig-
nature images of various sizes can therefore become a challenge.
For this reason, we have applied a modulo operation on two of our
metrics – namely the number of control transfer instructions (x-
axis) and the number of data transfer instructions (z-axis). This ap-
proach scales the visualization to a unified size and allows for sim-
plified comparison and reasoning between visual signatures. Fig-
ure 1 (left top) shows the pure signature representation (without
host) of Klez [Wikipedia-Klez 2008], a computer worm that spreads
by sending itself to other computers via email, with a modulo 64
operation performed on both the x-axis as well as z-axis. We have
also added red and green color-coding to the image to additionally
aid the viewer to assess and compare visual signatures. Note that
we analyze a worm, i.e. a binary malware without a host.

4 Signature Comparison

In this experiment, we have applied our signature visualization ap-
proach to four versions of Klez, referred to as Klez-a, Klez-b, Klez-
c and Klez-d, cf. Figure 1. By examining Figure 1 one can see that
the signatures of different variants of Klez are visually similar. The
visual similarities of Klez signatures justifies our choice of layout
metrics. Nevertheless, even though it is possible to convey the sig-
nature of a binary through imagery, it is challenging to compare the

signature images of different binaries because each image contains
complex patterns. It is therefore difficult to answer questions about
the similarities of different binaries from the signature image alone.
Despite these challenges, there is value in determining the extent to
which different versions of malware are similar to each other. Thus,
we have taken two approaches to measure these similarities.

First, we applied diff, a Linux-based application, to check for
textual-based similarities among the assembly representations of
each binary. Second, we created a new signature image to repre-
sent the differences between the individual signatures in order to
support the viewer in reasoning about the development cycle of a
particular malware.

4.1 Binary comparison with diff

We utilized the AST unparser in ROSE to generate assembly in-
structions for each malware and compared the instructions against
each other using diff. The similarity results of different versions of
Klez are presented in the following Table:

Name Similarity
Klez-a, Klez-b 2%
Klez-a, Klez-c 4%
Klez-b, Klez-d 6%
Klez-c, Klez-d 2%
Klez-c, Klez-e 2%
Klez-d, Klez-e 2%
Klez-e, Klez-f 29%

Surprisingly, the data conveys that there are almost no similarities
between any versions of Klez. The only exception is the compar-
ison between the assembly representation of Klez-e and Klez-f,



Klez-a Klez-b
4011c8: call DWORD PTR [4090c0 <CreateFileA>] 4011c8: call DWORD PTR [40a0c8 <CreateFileA>]
4011ce: mov edi, eax 4011ce: cmp eax, 0xffffffff
4011d0: cmp edi, 0xffffffff 4011d1: mov DWORD PTR [0xffffffe4 <hObject>+ebp], eax
4011d3: mov DWORD PTR [0xffffffe4 <hObject>+ebp], edi 4011d4: jnz 0x4011dd
4011d6: jnz 0x4011df 4011d6: xor eax, eax

Figure 2: Snippet of assembly instructions for Klez-a and Klez-b.

Figure 3: Delta Signature visualization of top row: Klez-a/b, Klez-b/d, Klez-d/e; bottom row: Klez-a/c, Klez-c/d, Klez-c/e.

which shows a similarity of 29%. This data is surprising as one
would correctly assume that the offspring of a particular computer
worm should be somewhat related to the archetype. In addition,
Figure 1 at least visually reveals that some similarities among the
Klez worm family should exist.

Figure 2 shows a snippet of two regions of assembly code taken
from Klez-a and Klez-b. This figure reveals why diff can not suc-
cessfully compare software binaries or their assembly representa-
tions. The reasons are mainly:

Renamed Registers. The register names seem to differ between var-
ious versions of Klez. In Figure 2 the register edi (left) was re-
named to register eax (right). This change could have resulted from
an automated obfuscation technique.

Optimization/Permutation. Figure 2 shows that the order of the
instructions has changed from one binary to the next. This phe-
nomenon applies throughout the entire diff result and can be at-
tributed to either compiler optimizations during source code com-
pilation or to permutations of the assembly instructions (without the
program semantic to be changed).

One reason why diff fails is that renamed registers as well as com-
piler optimizations shuffle assembly instructions enough for diff not
to be able to determine any similarities among the assembly codes.
Furthermore, because most instructions are reorganized, the desti-
nation of conditional transfer instructions, such as jmp and call,
is adjusted - causing even fewer matches. Finally, because the op-
codes of instructions have different byte sizes, a reorganization of

instructions leads to the change of addresses. This is why in Fig-
ure 2 there is no equivalent of Klez-a at address 4011d0 in Klez-b.
For these reasons, the similarity results of Klez versions using diff
are poor. Nevertheless, we believe that the similarity results could
be improved by using a comparison algorithm that is better than
line by line comparison. For instance, a clone detection algorithm
should overcome obstacles such as register renaming and compiler
optimizations. We will pursue this approach in the near future.

4.2 Binary Comparison using Visualization

To calculate the difference between two visual signatures, we sub-
tract the size of one binary’s function (y-axis) from the other. To
avoid negative y-axis values, our implementation is based on the
subtraction of the smaller value from the larger. In this way, the
new signature – referred to as delta signature image – represents
extensions as well as removals of instructions between two binary
versions.

Figure 3 shows the delta signatures for the family of Klez worms.
Left-top illustrates the delta image from Klez-a and Klez-b and the
image below shows the delta from Klez-a and Klez-c. It appears
that Klez-a/Klez-c are almost entirely the same, while the visual
difference between Klez-a/Klez-b is larger. One may want to con-
clude that more functionality has been added or changed from ver-
sion Klez-a to Klez-b. The next column in Figure 3 (top-middle)
shows the delta signature from Klez-b and Klez-d. Below is an im-
age for the delta of Klez-c and Klez-d. From the images one can
conclude that Klez-d is probably an offspring of Klez-b. This is



Figure 4: Delta Signature Visualization of Klez-e/Klez-f (left); using a different metric: Klez-a/Klez-b (middle), Klez-a/Klez-c (right).

because the Klez-c/Klez-d image contains a layer in the far front
that is equivalent to that in the image of Klez-a/Klez-b. This means
that the two have something distinctive in common. In addition,
the visual delta between Klez-b/Klez-d appears to be less than that
for Klez-c/Klez-d, strengthening our assumption of a transition be-
tween Klez-b and Klez-d.

The right top corner of Figure 3 represents the delta signature from
Klez-d and Klez-e and below it is a delta signature from Klez-c and
Klez-e. Here our visual judgment fails. The images are too similar
for us to judge whether Klez-e is an offspring of Klez-c or Klez-d or
possibly both. The final delta image in the Klez series is on the left
side of Figure 4. This is a delta signature from Klez-e and Klez-f.
It seems that these two malwares have much in common.

Figure 3 confirms our assumption that the visualization of binary
signatures is important and can help viewers to hypothesize about
the evolution of software binaries. Furthermore, signature visu-
alization appears to overcome the problems of renamed registers
and at least some compiler optimization. In this experiment, we
have visualized the delta signatures from different Klez worms,
and this has allowed us to form conclusions about the develop-
mental history of this worm family. In particular, our archeolog-
ical rollback allows us to affirm that the Klez worm evolved from
A−>B−>D−>E−>F and A−>C−>E−>F., cf. Figure 5.

Figure 5: Evolution of Klez worm.

We have also experimented with applying other metric values to
represent binary signatures. Figure 4 shows the result of applying
a metric based on the name of the function to the x- and z-axis. In
this case, we have converted each character in a function’s name
to an integer value and summed the entire string. Figure 4 (mid-
dle) shows the delta signature from Klez-a and Klez-b using this
approach; the figure on the right represents the delta signature from
Klez-a and Klez-c.

5 Related Work

We are aware of little related work within binary analysis and visu-
alization. CodeSurfer/x86 [Balakrishnan et al. 2005] is a platform
for analyzing x86 executables; similar to ROSE. The binary analy-
sis extension to ROSE is relatively new and we therefore believe the

analysis capabilities of CodeSurfer/x86 more sophisticated. Mal-
warez [Alex Dragulescu 2008] is a visualization tool for malware.
It is not inteded as a binary analysis and visualization infrastructure,
but rather a piece of art. It represents disassembled code, API calls,
memory addresses and subroutines in various 3D visual forms.

6 Conclusion and Future Work

In this paper we have presented one approach for visualizing the
signature of software binaries. Our goal is to enable the viewer to
make observations about binaries, in particular observations about
the evolution of a malicious code. In our experiment we have shown
how a visual approach could be more effective for determining bi-
nary code similarities than applying tools such as diff. We believe
that clone detection could aid this process. In the future, we will
explore binary clone detection and develop additional types of anal-
ysis for software binaries.

References

ALEX DRAGULESCU, 2008. Malwarez.
http://www.sq.ro/malwarez.php.

BALAKRISHNAN, G., GRUIAN, R., REPS, T., AND TEITELBAUM,
T. 2005. CodeSurfer/x86A Platform for Analyzing x86 Executa-
bles, vol. 3443. Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, March, 250–254.

CNN, 2007. Staged cyber attack reveals vulnerability in power
grid. http://www.cnn.com/2007/US/09/26/power.at.risk/.

DATARESCUE, 2007. IDA - Interactive Disassembler.
www.datarescue.com.

PANAS, T., EPPERLY, T., QUINLAN, D., SÆBJØRNSEN, A., AND
VUDUC, R. 2007. Communicating Software Architecture using
a Unified Single-View Visualization. In Proceedings of Int. Conf.
on Complex Computer Systems.

PETRE, M., BLACKWELL, A., AND GREEN, T. 1998. Cogni-
tive questions in software visualization. Software Visualization:
Programming as a Multimedia Experience (January), 453–480.

ROSE, 2008. Rose compiler. www.rosecompiler.org/.

STOREY, M.-A. D., WONG, K., AND MÜLLER, H. A. 2000.
How do program understanding tools affect how programmers
understand programs? Science of Computer Programming 36,
2–3, 183–207.

WIKIPEDIA-KLEZ, 2008. Klez (computer worm).
http://en.wikipedia.org/wiki/Klez.




